If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9d^2+25d-6=0
a = 9; b = 25; c = -6;
Δ = b2-4ac
Δ = 252-4·9·(-6)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-29}{2*9}=\frac{-54}{18} =-3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+29}{2*9}=\frac{4}{18} =2/9 $
| .20x+13=3+62.2 | | 7y+5+3y+1=2y+2 | | 2/3+h=8 | | -10-5r=15 | | 3/10x1/20=6 | | .5c+13=3c+48 | | 4=-3u-(-7)÷-8 | | 5x+6=2x=15 | | 8d-5d+7d=73 | | -9-z=19 | | 12x+14 = 170 | | .2m=-13(m+330) | | 1=5-2f | | 5(x-2)²=125 | | x(x-17)-18x=(x-13)(x+16) | | 19+5=-4(7x-6) | | -0.2k+6=10 | | -5+2n=3 | | 9x(x+3)-3=23x-2 | | n/0.2=9.04/10 | | -4(2-y)+3y-3(y-4)=12 | | (4)=7x+10 | | |8a-4|=12 | | X+13+x=13 | | .33t=t-154 | | F(x)=1/8x-11 | | -2/3x=8.7 | | 6(x+6)=9x | | 25x+10=20+40 | | .33t=t-54 | | 9x-9-8x+1=-2+4 | | n/0.9=0.09/10 |